
BERKELEY PAR LAB BERKELEY PAR LAB

UPC-THRILLE Demo

1

Chang-Seo Park

Correctness Group Highlights

 Active Testing for Java, C, and UPC

 Practical, easy-to-use tools for finding bugs,

with sophisticated program analysis internally

 Lightweight Specs for Parallelism

 By focusing just on parallelism, can we develop

simple specifications that greatly improve or

ability to find real parallelism bugs?

 Concurrit DSL for testing parallel code

2

Lightweight Parallel Specs

 Goal: Lightweight specifications

for parallelism correctness.

 Easy for programmers to write

 Greatly increase effectiveness in testing,

debugging, and verifying parallel programs

 Semantic determinism
[FSE’09 (best paper), CACM’10, ICSE’10 (IFIP TC2 Manfred Paul)].

 Semantic atomicity [ASPLOS‘11].

 Nondeterministic sequential specs for

parallel correctness [HotPar’10, PLDI’11, PPoPP’12].

3

Key: Decompose effort in addressing

parallelism and functional correctness

4

Parallel

program

Functional

specification

ϕ

Satisfies?

Parallel

program

Functional

specification

ϕ

Nondeterministic

sequential

program

Functional

Correctness.

Parallelism

Correctness.

NDSeq for SEJITS Debugging

 Goal: Localize bug in a SEJITS execution.

5

Parallel C++ Code

Pure Python Code

Nondeterministic

C++ Code

Nondeterministic

Python Code

Parallel C++ Trace

Nondeterministic

C++ Trace

?

Nondeterministic

Python Trace

?

Pure Python Trace

?

Error.

Correctness Group Highlights

 Active Testing for Java, C, and UPC

 Practical, easy-to-use tools for finding bugs,

with sophisticated program analysis internally

 Lightweight Specs for Parallelism

 Easy to write and, with testing, effective in

finding real parallelism bugs

 Determinism, atomicity, and NDSeq

 Concurrit DSL for Testing Parallel Code

 Can we combine programmer intuition with

testing techniques to find, reproduce bugs?

6

Concurrit: Domain Specific Language

for Writing Concurrent Tests

Systematically
explore

all-and-only
thread schedules
specified by DSL

+
Test in

Concurrit DSL

Specify a set of schedules in formal,
concise, and convenient way

Insights/ideas
about

thread schedules

Software Under Test
P1 P2 C1 C2

w q e r t y u

BERKELEY PAR LAB BERKELEY PAR LAB

Concurrit Demo

8

Tayfun Elmas

BERKELEY PAR LAB

Simple Test for an Apache bug

9

• To appear in PLDI 2013.

• Implementation: DSL embedded in C++

• Available at http://code.google.com/p/concurrit/

– Can write tests for

• Unit testing:

– Both manual and automated (Pin) instrumentation

• System testing:

– Manual instrumentation (lightweight and portable)

– Test servers, e.g. Memcached, MySQL, Apache Httpd.

Concurrit

11

Example: Producer/consumer

Bounded buffer

P1 P2

tail

Produce
4 items

Produce
4 items

C1 C2

head

Consume
4 items

Consume
4 items

Error:
Consumer reads
from uninitialized cell.

w q e r t y u

• Run 1000 times:

– No guarantee

• Insert sleeps:

– Useful but ad hoc, informal

• Concurrit approach

– Write test to search for

buggy schedules

12

How to reproduce a concurrency error?
(Consumer reads from uninitialized cell.)

Software Under Test

P1 P2 C1 C2

w q e r t y u

Concurrit: Domain Specific Language

for Writing Concurrent Tests

Systematically
explore

all-and-only
thread schedules
specified by DSL

+
Test in

Concurrit DSL

Specify a set of schedules in formal,
concise, and convenient way

Insights/ideas
about

thread schedules

Software Under Test
P1 P2 C1 C2

w q e r t y u

SearchAll: Search all schedules
TESTCASE() {

 TVAR(P1); TVAR(P2);

 TVAR(C1); TVAR(C2);

 WAIT_FOR_DISTINCT_THREADS(

 (P1, P2), ENTERS(producer_routine));

 WAIT_FOR_DISTINCT_THREADS(

 (C1, C2), ENTERS(consumer_routine));

 WHILE (!ALL_ENDED(P1, P2, C1, C2)) {

 TVAR(t);

 CHOOSE_THREAD_BACKTRACK(

 t, (P1, P2, C1, C2));

 RUN_THREAD_THROUGH(

 t, READS() || WRITES() || CALLS()

 || ENTERS() || RETURNS());

 }

}

Instrumented to control

Software Under Test
(SUT)

P1 P2

Produce
4 items

Produce
4 items

C1 C2

Consume
4 items

Consume
4 items

Capture threads
from SUT

SearchAll: Search all schedules
TESTCASE() {

 TVAR(P1); TVAR(P2);

 TVAR(C1); TVAR(C2);

 WAIT_FOR_DISTINCT_THREADS(

 (P1, P2), ENTERS(producer_routine));

 WAIT_FOR_DISTINCT_THREADS(

 (C1, C2), ENTERS(consumer_routine));

 WHILE (!ALL_ENDED(P1, P2, C1, C2)) {

 TVAR(t);

 CHOOSE_THREAD_BACKTRACK(

 t, (P1, P2, C1, C2));

 RUN_THREAD_THROUGH(

 t, READS() || WRITES() || CALLS()

 || ENTERS() || RETURNS());

 }

}

Instrumented to control

Software Under Test
(SUT)

P1 P2

Produce
4 items

Produce
4 items

C1 C2

Consume
4 items

Consume
4 items

Run captured
threads

SearchInFunc: Localize search to particular
functions and operations

Instrumented to control

Software Under Test
(SUT)

P1 P2

Produce
4 items

Produce
4 items

C1 C2

Consume
4 items

Consume
4 items

TESTCASE() {

 TVAR(P1); TVAR(P2);

 TVAR(C1); TVAR(C2);

 WAIT_FOR_DISTINCT_THREADS(

 (P1, P2), ENTERS(bounded_buf_put));

 WAIT_FOR_DISTINCT_THREADS(

 (C1, C2), ENTERS(bounded_buf_get));

 WHILE (!ALL_ENDED(P1, P2, C1, C2)) {

 TVAR(t);

 CHOOSE_THREAD_BACKTRACK(

 t, (P1, P2, C1, C2));

 RUN_THREAD_THROUGH(

 t, ENTERS() || RETURNS()

 || HITS_MANUAL_PC());

 }

}

17

BuggySchedule
TESTCASE() {

 TVAR(P1);

 TVAR(C1); TVAR(C2);

 WAIT_FOR_THREAD(

 P1, ENTERS(bounded_buf_put));

 WAIT_FOR_DISTINCT_THREADS(

 (C1, C2), ENTERS(bounded_buf_get));

 RUN_THREAD_THROUGH(

 P1, RETURNS(bounded_buf_put));

 RUN_THREAD_THROUGH(

 C1, HITS_MANUAL_PC(42));

 RUN_THREAD_THROUGH(

 C2, RETURNS(bounded_buf_get));

 RUN_THREAD_THROUGH(C1, ENDS()); // ERROR!

}

P1

Insert item to buffer

C1

Check item and
prepare to read

C2

Read item and
update head

Read from new head
(uninitialized slot)

Where We Ended Up

 Active Testing for Java, C, and UPC

 Practical, easy-to-use tools for finding bugs,

with sophisticated program analysis internally

 Lightweight Specs for Parallelism

 Easy to write and, with testing, effective in

finding real parallelism bugs

 Determinism, atomicity, and NDSeq

 Concurrit DSL for Testing Parallel Code

 Combine programmer intuition with automated

testing techniques to find, reproduce bugs.

18

