UPC-THRILLE Demo

Chang-Seo Park

Correctness Group Highlights

» Active Testing for Java, C, and UPC

Practical, easy-to-use tools for finding bugs,
with sophisticated program analysis internally

» Lightweight Specs for Parallelism

By focusing just on parallelism, can we develop
simple specifications that greatly improve or
ability to find real parallelism bugs?

» Concurrit DSL for testing parallel code

Lightwelight Parallel Specs

» Goal: Lightweilght specifications
for parallelism correctness.
Easy for programmers to write

Greatly increase effectiveness In testing,
debugging, and verifying parallel programs

» Semantic determinism
[FSE’09 (best paper), CACM’10, ICSE’10 (IFIP TC2 Manfred Paul)].

» Semantic atomicity [AsPLOS 11].

» Nondeterministic sequential specs for

parallel correctness [HotPar'10, PLDI'11, PPoPP12].
3

Key: Decompose effort in addressing
parallelism and functional correctness

S

Functional
Correctness. | Correctness.

Nondeterministic
sequential
program

Parallelism

Functional
pecification

¢

Parallel
program

NDSeq for SEJITS Debugging

Goal: Localize bug in a SEJITS execution.

Pure Python Code} [Pure Python Trace}

/\

qa?c

Nondetermmlstlc

Python Code

Nondeterministic
Pytho 1 Trace

—

C++ Code

Parallel C++ Code

|

| |

{ Nondetermlnlstlc } " Error .|St|C }
{]

{ Parallel C++ Trace

Correctness Group Highlights

» Active Testing for Java, C, and UPC

Practical, easy-to-use tools for finding bugs,
with sophisticated program analysis internally

» Lightweight Specs for Parallelism

Easy to write and, with testing, effective In
finding real parallelism bugs

Determinism, atomicity, and NDSeq

» Concurrit DSL for Testing Parallel Code

Can we combine programmer intuition with
testing technigues to find, reproduce bugs?

6

Concurrit: Domain Specific Language
for Writing Concurrent Tests

T ——————,- . | Software Under Test
Insights/ideas PL P2 C1 C2
5 about i é é ; é
thread schedules Systematically
E ______ — __________________i qwiejrit]y UN explore
) | : | : ll-and-only
+ a
Lﬁ | | | thread schedules
rest in specified by DSL

Concurrit DSL

I
Specify a set of schedules in formal,

concise, and convenient way

Concurrit Demo

Tayfun Elmas

Electrical Engineering and
Computer Sciences

Simple Test for an Apache bug

Now suppose there are 3 threads, A, B, C running test func.

Threads A and B call js_DestroyContext and thread™C calls jsgNewContext.
First thread™A removes its context from the runtime list. That context is not
the last one so thread does not touch rt—> state and eventually calls jsgGC.
The latter skips the above check and tries to to take the GC lock.

Before this moment the thread™B takes the lock, removes its context from the
runtime list, discovers that it is the last, sets rt— state to LANDING, runs
the-last-context-cleanup, runs the GC and then sets rt—> state to DOWN.
At this stage the thread™A gets the GC lock, setup itself as the thread that
10 runs the GC and releases the GC lock to proceed with the GC

when rt—> state is DOWN.

12 Now the thread™C enters the picture. It discovers under the GC lock in

13 jsgNewContext that the newly allocated context is the first one. Since

14 rt— state is DOWN, it releases the GC lock and starts the first context

15 initialization procedure. That procedure includes the allocation of the initial
16 atoms and it will happen when the thread™A runs the GC.

17 This may lead precisely to the first stack trace from the comment 4.

1
2
3
4
5
6
7
8
9

Figure 2. Bug scenario, taken from Comment #5 of the bug report,
describing an interleaving of threads for the program in Figure 1.

ExactScheduleTest :

—-J O Ol W N+~

Tid tA, tB, tC = WaitForDistinctThreads(3, EntersFunc(JS_NewContext));
RunThreadsUntil(tA, tB, EntersFunc(JSgDestroyContext));
RunThreadUntil(tA, InFunc(jsgGC) & & ReadsMem(&rt—> state));
RunThreadUntil(tB, ThreadEnds);
RunThreadUntil(tA, InFunc(jsyGC) & & WritesMem(&rt—> gcNumber));
RunThreadUntil(tC, EntersFunc(jsgAddRoot));

RunThreadUntil(tA, ReturnsFunc(jsgGC)); // violates assertion!

Concurrit

* To appear in PLDI 2013.
* Implementation: DSL embedded in C++
* Available at http://code.google.com/p/concurrit/

— Can write tests for
* Unit testing:
— Both manual and automated (Pin) instrumentation
* System testing:
— Manual instrumentation (lightweight and portable)
— Test servers, e.g. Memcached, MySQL, Apache Httpd.

Example: Producer/consumer

P1 P2
Produce Produce
4 items 4 items
Bounded buffer tTI
\ qlw|e | r|t|y|lu M
head
C1 C2 Error:
Consume Consume Consumer reads
4 items 4 items from uninitialized cell.

11

How to reproduce a concurrency error?

Software Under Test

P1

Cl1 C2

s

NN

(Consumer reads from uninitialized cell.)

* Run 1000 times:

— No guarantee
* Insert sleeps:

— Useful but ad hoc, informal
e Concurrit approach

— Write test to search for
buggy schedules

12

Concurrit: Domain Specific Language
for Writing Concurrent Tests

T ——————,- . | Software Under Test
Insights/ideas PL P2 C1 C2
5 about i é é ; é
thread schedules Systematically
E ______ — __________________i qwiejrit]y UN explore
) | : | : ll-and-only
+ a
Lﬁ | | | thread schedules
rest in specified by DSL

Concurrit DSL

I
Specify a set of schedules in formal,

concise, and convenient way

SearchAll: Search all schedules

Capture threads
from SUT

Instrumented to control

Software Under Test

(SUT)

P1 P2
Produce Produce
4 items 4 items

C1 C2
4 items 4 items

TESTCASE () {

TVAR (P1) ;
TVAR (C1) ;

TVAR (P2) ;
TVAR (C2) ;

4 WAIT FOR DISTINCT THREADS (

(P1, P2), ENTERS (producer routine));

WAIT FOR DISTINCT THREADS (

(Cl, C2), ENTERS (consumer routine));

.

WHILE (!ALL ENDED(P1, P2, Cl, C2)) {
TVAR (t) ;

CHOOSE THREAD BACKTRACK (
t, (Pl1, P2, Cl, C2));

RUN THREAD THROUGH (
t, READS() || WRITES() || CALLS()
| | ENTERS () || RETURNS()) ;

SearchAll: Search all schedules

Run captured

TESTCASE () {

TVAR (P1) ; TVAR (P2) ;
threads TVAR (C1) ; TVAR (C2) ;
\ WAIT FOR DISTINCT THREADS (
(Pl P2), ENTERS(producer_routine));
Instrumented to cont\ak
N WAIT FOR DISTINCT THREADS (
Software Under Test \\ (Cl C2), ENTERS (consumer routine));
(SUT) _
P1 P2 ﬂUHILE (!ALL_ENDED (P1, P2, C1, C2)) {
TVAR (t) ;
Produce Produce
4 items 4 items CHOOSE_THREAD BACKTRACK (
t, (P1, P2, C1, C2));
C1 C2
RUN THREAD THROUGH (
Consume Consume t, READS() || WRITES() || CALLS()
4 items 4 items | | ENTERS() || RETURNS());

A

~N

J

SearchinFunc: Localize search to particular
functions and operations

TESTCASE () {

TVAR (P1l); TVAR(P2);
TVAR (Cl); TVAR(C2);

WAIT FOR DISTINCT THREADS (
(P1, P2), ENTERS (bounded buf put));

Instrumented to control
WAIT FOR DISTINCT THREADS (
Software Under Test (Cl, C2), ENTERS (bounded buf get));
(SUT) - =
P1 P2 WHILE (!ALL ENDED(P1, P2, Cl, C2)) ({
TVAR (t) ;
Produce Produce
4 items 4 items CHOOSE THREAD BACKTRACK (
t, (P1, P2, C1, C2));
C1 C2
c RUN THREAD THROUGH (
Consume onsume t, ENTERS() || RETURNS ()
4 items 4 items
| | HITS MANUAL PC());
}

P1

BuggySchedule

Insert item to buffer

\
\
\

C1 \

\
Check item and \\

prepare to read

\\
’ C2 N
\\ \
P \
Read item and

¢ update head

) N\

Read from new head
(uninitialized slot)~ _

TESTCASE () {

TVAR (P1) ;
TVAR (Cl); TVAR(C2);

WAIT FOR THREAD (
P1, ENTERS (bounded buf put));

WAIT FOR DISTINCT THREADS (

(Cl, C2), ENTERS (bounded buf get));

RUN_THREAD THROUGH (
P1l, RETURNS (bounded buf put))

RUN_THREAD THROUGH (
Cl, HITS MANUAL PC(42));

A
RUN_THREAD THROUGH (

=>
}

C2, RETURNS (bounded buf get));

RUN THREAD THROUGH(Cl, ENDS()); // ERROR!

Where We Ended Up

» Active Testing for Java, C, and UPC

Practical, easy-to-use tools for finding bugs,
with sophisticated program analysis internally

» Lightweight Specs for Parallelism

Easy to write and, with testing, effective In
finding real parallelism bugs

Determinism, atomicity, and NDSeq

» Concurrit DSL for Testing Parallel Code

Combine programmer intuition with automated

testing techniques to find, reproduce bugs.
|18

